Что значит sql. Назначение и основа

Язык запросов к базам данных SQL появился в 70-е годы. Его прототип был разработан фирмой IBM и известен под названием SEQUEL (Structured English QUEry Language). SQL вобрал в себя достоинства реляционной модели, в частности то, что в ее основе лежит математический аппарат реляционной алгебры и реляционного исчисления, используя при этом сравнительно небольшое число операторов и простой синтаксис.

Благодаря своим качествам язык SQL стал вначале «де-факто», а затем и официально утвержденным в качестве стандарта языка для работы с реляционными базами данных, поддерживаемого всеми ведущими мировыми фирмами, действующими в области технологии баз данных. Использование выразительного и эффективного стандартного языка позволило в настоящее время обеспечить высокую степень независимости разрабатываемых прикладных программных систем от конкретного типа используемой СУБД, существенно поднять уровень и унификацию инструментальных средств разработки приложений, работающих с реляционными базами данных.

Говоря о стандарте языка SQL, следует заметить, что большинство его коммерческих реализаций имеют большие или меньшие отступления от стандарта. Это, конечно, ухудшает совместимость систем, использующих различные «диалекты» SQL. С другой стороны, полезные расширения реализаций языка относительно стандарта являются средством развития языка и со временем включаются в новые редакции стандарта.

Языку SQL посвящено большое число книг, в том числе и учебного назначения, некоторые из них приведены в списке литературы данного пособия , в частности, учебное пособие специально посвящено вопросам практического изучения языка SQL. В связи с этим в данном пособии мы рассмотрим лишь важные общие особенности данного языка, имеющие значение для последующего изложения материала.

8.1. Отличие SQL от процедурных языков программирования

Язык SQL – относится к классу непроцедурных языков программирования. В отличие от универсальных процедурных языков, которые также могут быть использованы для работы с базами данных, язык SQL ориентирован не на записи , а на множества . Это означает следующее. В качестве входной информации для формулируемого на языке SQL запроса к базе данных используется множество кортежей-записей одной или нескольких таблицотношений. В результате выполнения запроса также образуется множество кортежей результирующей таблицы-отношения. Другими словами в SQL результатом любой операции над отношениями также является отношение. Запрос SQL задает не процедуру, т.е. последовательность действий, необходимых для получения результата, а условия, которым должны удовлетворять кортежи результирующего отношения, сформулированные в терминах входного (или входных) отношений.

8.2. Формы и составные части SQL

Существуют и используются две формы языка SQL: интерактивный SQL

и встроенный SQL.

Интерактивный SQL используется для непосредственного ввода и получения результата SQL-запросов пользователем в интерактивном режиме.

Встроенный SQL состоит из команд SQL, встроенных внутрь программ, которые обычно написаны на некотором другом языке (Паскаль, С, С++ и др.). Это делает программы, написанные на таких языках, более мощными и эффективными, обеспечивая возможность работы с помощью них с данными, хранящимися в реляционных базах данных, требуя, однако, введения дополнительных средств, обеспечивающих интерфейс SQL с языком, в который он встраивается.

И интерактивный, и встроенный SQL обычно разделяют на следующие составные части.

Язык Определения Данных – DDL (Data Definition Language), дает возможность создания, изменения и удаления различных объектов базы данных (таблиц, индексов, пользователей, привилегий и т.д.).

К числу дополнительных функций языка определения данных DDL могут быть включены также средства определения ограничений целостности данных,

определения порядка в структурах хранения данных, описания элементов физического уровня хранения данных.

Язык Обработки Данных – DML (Data Manipulation Language),

предоставляет возможность выборки информации из базы данных и преобразования хранящейся в ней данных.

Тем не менее, это не два различных языка, а компоненты единого SQL.

8.3. Условия и терминология

Ключевые слова – это используемые в выражениях SQL слова, которые имеют специальное назначение. Например, они могут обозначать конкретные команды SQL. Ключевые слова нельзя использовать для других целей, например в качестве имен объектов базы данных.

Операторы SQL являются инструкциями, с помощью которых производится обращение SQL к базе данных. Операторы состоят из одной или более отдельных логических частей, называемых предложениями. Предложения начинаются соответствующим ключевым словом и состоят из ключевых слов и аргументов.

Следует обратить внимание на то, что термины, используемые в языке SQL, несколько отличаются от терминов, принятых при описании реляционной модели. В частности, вместо термина отношение в нем используется термин таблица , вместо терминов кортеж и атрибут , соответственно, строка и столбец .

8.4. Выборка данных. Оператор SELECT

Простейшие SELECT- запросы

Оператор SELECT (ВЫБРАТЬ ) языка SQL является самым важным и самым часто используемым оператором. Он предназначен для выборки информации из таблиц базы данных. Упрощенный синтаксис оператора SELECT выглядит следующим образом.

SELECT < список атрибутов >

FROM < список таблиц>

В квадратных скобках указаны элементы, которые могут в запросе отсутствовать.

Ключевое слово SELECT сообщает СУБД, что данное предложение является запросом на извлечение информации. После слова SELECT через запятую перечисляются наименования полей (список атрибутов), содержимое которых запрашивается.

Обязательным ключевым словом в предложении-запросе SELECT является слово FROM (из). За ключевым словом FROM указывается список разделенных запятыми имен таблиц, из которых извлекается информация.

Например,

SELECT NAME, SURNAME FROM STUDENT;

SQL-запрос должен заканчиваться символом «точка с запятой». Приведенный запрос осуществляет выборку всех значений полей NAME и

SURNAME из таблицы STUDENT.

Его результатом является таблица следующего вида

Порядок следования столбцов в этой таблице соответствует порядку полей NAME и SURNAME , указанному в запросе, а не их порядку во входной таблице

STUDENT.

Обратим внимание на то, что получаемые в результате SQL-запроса таблицы не в полной мере отвечают определению реляционного отношения. В

частности в них могут оказаться дубликаты кортежей с одинаковыми значениями атрибутов.

Например, запрос: “Получить список названий городов, в которых живут студенты, сведения о которых находятся в таблице STUDENT ”, можно записать в следующем виде

SELECT CITY FROM STUDENT ;

Его результатом будет таблица

Белгород

Можно видеть, что в этой таблице могут встречаться одинаковые строки. Они выделены жирным шрифтом.

Для исключения из результата SELECT -запроса повторяющихся записей используется ключевое слово DISTINCT (отличный). Если запрос SELECT извлекает множество полей, то DISTINCT исключает дубликаты строк, в которых значения всех выбранных полей идентичны.

Введение в выражение оператора SELECT , предложения, определяемого ключевым словом WHERE (где), позволяет вводить выражение условия (предикат), принимающее значение истина или ложь для значений полей строк таблиц, к которым обращается оператор SELECT . Предложение WHERE определяет, какие строки указанных таблиц должны быть выбраны. В таблицу, являющуюся результатом запроса, включаются только те строки, для которых условие (предикат), указанное в предложении WHERE , принимает значение истина.

Написать запрос, выполняющий выборку имен (NAME ) всех студентов с фамилией (SURNAME ) Петров, сведения о которых находятся в таблице

SELECT SURNAME, NAME

FROM STUDENT

WHERE SURNAME = ‘ Петров ’;

В задаваемых в предложении WHERE условиях могут использоваться операции сравнения, задаваемые следующими операторами: = (равно), > (больше), < (меньше), >= (больше или равно), <= (меньше или равно), <> (не равно), а также логические операторы AND , OR и NOT .

Например, запрос для получения имен и фамилий студентов, обучающихся на третьем курсе и получающих стипендию (размер стипендии больше нуля) будет выглядеть таким образом

SELECT NAME, SURNAME FROM STUDENT

WHERE KURS = 3 AND STIPEND > 0 ;

8.5. Реализация операций реляционной алгебры средствами языка SQL. Реляционная полнота SQL

В предыдущих разделах, посвященных рассмотрению реляционной алгебры, говорилось, что одной из важных сторон наличия в реляционной модели такого математического аппарата является возможность оценки и доказательства реляционной полноты практически используемых языков запросов к базам данных, в частности языка SQL. Для того, чтобы показать, что язык SQL является реляционно полным, нужно показать, что любой оператор реляционной алгебры может быть выражен средствами SQL. На самом деле достаточно показать, что средствами SQL можно выразить любой из примитивных реляционных операторов. Ниже приведены примеры реализации реляционных операторов с помощью языка SQL.

Оператор объединения

Реляционная алгебра: A UNION B Оператор SQL:

SELECT * FROM A

SELECT * FROM B ;

Оператор пересечения

Реляционная алгебра: A INTERSECT B

Оператор SQL:

SELECT A. ПОЛЕ1, A. ПОЛЕ2, …,

FROM A , B

WHERE A. ПОЛЕ1=B. ПОЛЕ1 AND A. ПОЛЕ2=B. ПОЛЕ2 AND …;

SELECT A.* FROM A, B

WHERE A.pk =B.pk;

Оператор вычитания

Реляционная алгебра: A MINUS B Оператор SQL:

SELECT * FROM A

WHERE A.pk NOT IN (SELECT pk FROM B);

где A.pk и B.pk первичные ключи таблиц A и B

Оператор декартового произведения

Реляционная алгебра: A TIMES B Оператор SQL:

FROM A , B ;

SELECT A. ПОЛЕ1, A. ПОЛЕ2, …, B. ПОЛЕ1, B. ПОЛЕ2, …

FROM A CROSS JOIN B ;

Оператор проекции

Реляционная алгебра: A Оператор SQL:

SELECT DISTINCT X , Y , …, Z FROM A ;

Оператор выборки

Реляционная алгебра: A WHERE θ Оператор SQL:

SELECT * FROM A

WHERE θ ;

Оператор θ -соединения

Реляционная алгебра: (A TIMES B) WHERE θ Оператор SQL:

SELECT A. ПОЛЕ1, A. ПОЛЕ2, …, B. ПОЛЕ1, B. ПОЛЕ2, …

FROM A , B

WHERE θ ;

SELECT A. ПОЛЕ1, A. ПОЛЕ2, …, B. ПОЛЕ1, B. ПОЛЕ2, …

FROM A CROSS JOIN B WHERE θ ;

Оператор деления

Реляционная алгебра: A(X,Y) DEVIDE BY B(Y) Оператор SQL:

SELECT DISTINCT A . X FROM A

(SELECT *

(SELECT * FROM A A1

A1. X=A. X AND A1. Y=B. Y));

Таким образом, приведенные выражения доказывают, что язык SQL, как и реляционная алгебра, является реляционно полным.

Следует обратить внимание на то, если в приведенных запросах в таблицах будут присутствовать NULL -значения (см. ниже раздел 9.1), то все вышеперечисленные запросы могут отработать неверно, т.к. NULL < > NULL и NULL = NULL – есть ложь.

Это, однако, не опровергает сделанного вывода о реляционной полноте SQL, так как NULL -значения реляционной моделью не поддерживаются.

Для извлечения данных из базы данных используется язык SQL. SQL - это язык программирования, который очень напоминает английский, но предназначен для программ управления базами данных. SQL используется в каждом запросе в Access.

Понимание принципов работы SQL помогает создавать более точные запросы и упрощает исправление запросов, которые возвращают неправильные результаты.

Это статья из цикла статей о языке SQL для Access. В ней описаны основы использования SQL для выборки данных и приведены примеры синтаксиса SQL.

В этой статье

Что такое SQL?

SQL - это язык программирования, предназначенный для работы с наборами фактов и отношениями между ними. В программах управления реляционными базами данных, таких как Microsoft Office Access, язык SQL используется для работы с данными. В отличие от многих языков программирования, SQL удобочитаем и понятен даже новичкам. Как и многие языки программирования, SQL является международным стандартом, признанным такими комитетами по стандартизации, как ISO и ANSI .

На языке SQL описываются наборы данных, помогающие получать ответы на вопросы. При использовании SQL необходимо применять правильный синтаксис. Синтаксис - это набор правил, позволяющих правильно сочетать элементы языка. Синтаксис SQL основан на синтаксисе английского языка и имеет много общих элементов с синтаксисом языка Visual Basic для приложений (VBA).

Например, простая инструкция SQL, извлекающая список фамилий контактов с именем Mary, может выглядеть следующим образом:

SELECT Last_Name
FROM Contacts
WHERE First_Name = "Mary";

Примечание: Язык SQL используется не только для выполнения операций над данными, но еще и для создания и изменения структуры объектов базы данных, например таблиц. Та часть SQL, которая используется для создания и изменения объектов базы данных, называется языком описания данных DDL. Язык DDL не рассматривается в этой статье. Дополнительные сведения см. в статье Создание и изменение таблиц или индексов с помощью запроса определения данных .

Инструкции SELECT

Инструкция SELECT служит для описания набора данных на языке SQL. Она содержит полное описание набора данных, которые необходимо получить из базы данных, включая следующее:

    таблицы, в которых содержатся данные;

    связи между данными из разных источников;

    поля или вычисления, на основе которых отбираются данные;

    условия отбора, которым должны соответствовать данные, включаемые в результат запроса;

    необходимость и способ сортировки.

Предложения SQL

Инструкция SQL состоит из нескольких частей, называемых предложениями. Каждое предложение в инструкции SQL имеет свое назначение. Некоторые предложения являются обязательными. В приведенной ниже таблице указаны предложения SQL, используемые чаще всего.

Предложение SQL

Описание

Обязательное

Определяет поля, которые содержат нужные данные.

Определяет таблицы, которые содержат поля, указанные в предложении SELECT.

Определяет условия отбора полей, которым должны соответствовать все записи, включаемые в результаты.

Определяет порядок сортировки результатов.

В инструкции SQL, которая содержит статистические функции, определяет поля, для которых в предложении SELECT не вычисляется сводное значение.

Только при наличии таких полей

В инструкции SQL, которая содержит статистические функции, определяет условия, применяемые к полям, для которых в предложении SELECT вычисляется сводное значение.

Термины SQL

Каждое предложение SQL состоит из терминов, которые можно сравнить с частями речи. В приведенной ниже таблице указаны типы терминов SQL.

Термин SQL

Сопоставимая часть речи

Определение

Пример

идентификатор

существительное

Имя, используемое для идентификации объекта базы данных, например имя поля.

Клиенты.[НомерТелефона]

оператор

глагол или наречие

Ключевое слово, которое представляет действие или изменяет его.

константа

существительное

Значение, которое не изменяется, например число или NULL.

выражение

прилагательное

Сочетание идентификаторов, операторов, констант и функций, предназначенное для вычисления одного значения.

>= Товары.[Цена]

Основные предложения SQL: SELECT, FROM и WHERE

Общий формат инструкций SQL:

SELECT field_1
FROM table_1
WHERE criterion_1
;

Примечания:

    Access не учитывает разрывы строк в инструкции SQL. Несмотря на это, каждое предложение рекомендуется начинать с новой строки, чтобы инструкцию SQL было удобно читать как тому, кто ее написал, так и всем остальным.

    Каждая инструкция SELECT заканчивается точкой с запятой (;). Точка с запятой может стоять как в конце последнего предложения, так и на отдельной строке в конце инструкции SQL.

Пример в Access

В приведенном ниже примере показано, как в Access может выглядеть инструкция SQL для простого запроса на выборку.

1. Предложение SELECT

2. Предложение FROM

3. Предложение WHERE

Разберем пример по предложениям, чтобы понять, как работает синтаксис SQL.

Предложение SELECT

SELECT , Company

Это предложение SELECT. Оно содержит оператор (SELECT), за которым следуют два идентификатора ("[Адрес электронной почты]" и "Компания").

Если идентификатор содержит пробелы или специальные знаки (например, "Адрес электронной почты"), он должен быть заключен в прямоугольные скобки.

В предложении SELECT не нужно указывать таблицы, в которых содержатся поля, и нельзя задать условия отбора, которым должны соответствовать данные, включаемые в результаты.

В инструкции SELECT предложение SELECT всегда стоит перед предложением FROM.

Предложение FROM

FROM Contacts

Это предложение FROM. Оно содержит оператор (FROM), за которым следует идентификатор (Контакты).

В предложении FROM не указываются поля для выборки.

Предложение WHERE

WHERE City="Seattle"

Это предложение WHERE. Оно содержит оператор (WHERE), за которым следует выражение (Город="Ростов").

С помощью предложений SELECT, FROM и WHERE можно выполнять множество действий. Дополнительные сведения об использовании этих предложений см. в следующих статьях:

Сортировка результатов: ORDER BY

Как и в Microsoft Excel, в Access можно сортировать результаты запроса в таблице. Используя предложение ORDER BY, вы также можете указать способ сортировки результатов при выполнении запроса. Если используется предложение ORDER BY, оно должно находиться в конце инструкции SQL.

Предложение ORDER BY содержит список полей, для которых нужно выполнить сортировку, в том же порядке, в котором будут применена сортировка.

Предположим, например, что результаты сначала нужно отсортировать по полю "Компания" в порядке убывания, а затем, если присутствуют записи с одинаковым значением поля "Компания", - отсортировать их по полю "Адрес электронной почты" в порядке возрастания. Предложение ORDER BY будет выглядеть следующим образом:

ORDER BY Company DESC,

Примечание: По умолчанию Access сортирует значения по возрастанию (от А до Я, от наименьшего к наибольшему). Чтобы вместо этого выполнить сортировку значений по убыванию, необходимо указать ключевое слово DESC.

Дополнительные сведения о предложении ORDER BY см. в статье Предложение ORDER BY .

Работа со сводными данными: предложения GROUP BY и HAVING

Иногда возникает необходимость работы со сводными данными, такими как итоговые продажи за месяц или самые дорогие товары на складе. Для этого в предложении SELECT к полю применяется агрегатная функция. Например, если в результате выполнения запроса нужно получить количество адресов электронной почты каждой компании, предложение SELECT может выглядеть следующим образом:

Возможность использования той или иной агрегатной функции зависит от типа данных в поле и нужного выражения. Дополнительные сведения о доступных агрегатных функциях см. в статье Статистические функции SQL .

Задание полей, которые не используются в агрегатной функции: предложение GROUP BY

При использовании агрегатных функций обычно необходимо создать предложение GROUP BY. В предложении GROUP BY указываются все поля, к которым не применяется агрегатная функция. Если агрегатные функции применяются ко всем полям в запросе, предложение GROUP BY создавать не нужно.

Предложение GROUP BY должно следовать сразу же за предложением WHERE или FROM, если предложение WHERE отсутствует. В предложении GROUP BY поля указываются в том же порядке, что и в предложении SELECT.

Продолжим предыдущий пример. Пусть в предложении SELECT агрегатная функция применяется только к полю [Адрес электронной почты], тогда предложение GROUP BY будет выглядеть следующим образом:

GROUP BY Company

Дополнительные сведения о предложении GROUP BY см. в статье Предложение GROUP BY .

Ограничение агрегированных значений с помощью условий группировки: предложение HAVING

Если необходимо указать условия для ограничения результатов, но поле, к которому их требуется применить, используется в агрегированной функции, предложение WHERE использовать нельзя. Вместо него следует использовать предложение HAVING. Предложение HAVING работает так же, как и WHERE, но используется для агрегированных данных.

Предположим, например, что к первому полю в предложении SELECT применяется функция AVG (которая вычисляет среднее значение):

SELECT COUNT(), Company

Если вы хотите ограничить результаты запроса на основе значения функции COUNT, к этому полю нельзя применить условие отбора в предложении WHERE. Вместо него условие следует поместить в предложение HAVING. Например, если нужно, чтобы запрос возвращал строки только в том случае, если у компании есть несколько адресов электронной почты, можно использовать следующее предложение HAVING:

HAVING COUNT()>1

Примечание: Запрос может включать и предложение WHERE, и предложение HAVING, при этом условия отбора для полей, которые не используются в статистических функциях, указываются в предложении WHERE, а условия для полей, которые используются в статистических функциях, - в предложении HAVING.

Дополнительные сведения о предложении HAVING см. в статье Предложение HAVING .

Объединение результатов запроса: оператор UNION

Оператор UNION используется для одновременного просмотра всех данных, возвращаемых несколькими сходными запросами на выборку, в виде объединенного набора.

Оператор UNION позволяет объединить две инструкции SELECT в одну. Объединяемые инструкции SELECT должны иметь одинаковое число и порядок выходных полей с такими же или совместимыми типами данных. При выполнении запроса данные из каждого набора соответствующих полей объединяются в одно выходное поле, поэтому выходные данные запроса имеют столько же полей, сколько и каждая инструкция SELECT по отдельности.

Примечание: В запросах на объединение числовой и текстовый типы данных являются совместимыми.

Используя оператор UNION, можно указать, должны ли в результаты запроса включаться повторяющиеся строки, если таковые имеются. Для этого следует использовать ключевое слово ALL.

Запрос на объединение двух инструкций SELECT имеет следующий базовый синтаксис:

SELECT field_1
FROM table_1
UNION
SELECT field_a
FROM table_a
;

Предположим, например, что имеется две таблицы, которые называются "Товары" и "Услуги". Обе таблицы содержат поля с названием товара или услуги, ценой и сведениями о гарантии, а также поле, в котором указывается эксклюзивность предлагаемого товара или услуги. Несмотря на то, что в таблицах "Продукты" и "Услуги" предусмотрены разные типы гарантий, основная информация одна и та же (предоставляется ли на отдельные продукты или услуги гарантия качества). Для объединения четырех полей из двух таблиц можно использовать следующий запрос на объединение:

SELECT name, price, warranty_available, exclusive_offer
FROM Products
UNION ALL
SELECT name, price, guarantee_available, exclusive_offer
FROM Services
;

Дополнительные сведения об объединении инструкций SELECT с помощью оператора UNION см. в статье

В предыдущих двух статьях данного цикла, опубликованных в № 6 и 7 нашего журнала, мы рассмотрели различные механизмы доступа к данным, включая ADO, BDE и их альтернативы. Теперь мы знаем, как выбрать технологию доступа к данным для той или иной пары «СУБД - средство разработки».

Располагая технологией доступа к данным, можно наконец подумать и о том, каким образом следует манипулировать самими данными и метаданными. Способы манипуляции могут быть специфичными для данной СУБД (например, использование объектов клиентской части этой СУБД для доступа к объектам баз данных) или для данного механизма доступа к данным. Тем не менее существует более или менее универсальный способ манипуляции данными, поддерживаемый почти всеми серверными реляционными СУБД и большинством универсальных механизмов доступа к данным (в том числе при использовании их совместно с настольными СУБД). Этот способ - применение языка SQL (Structured Query Language - язык структурированных запросов). Ниже мы рассмотрим назначение и особенности этого языка, а также изучим, как с его помощью извлекать и суммировать данные, добавлять, удалять и модифицировать записи, защищать данные от несанкционированного доступа, создавать базы данных. Для более подробного изучения SQL мы можем порекомендовать книги Мартина Грабера «Введение в SQL» (М., Лори, 1996) и «SQL. Справочное руководство» (М., Лори, 1997).

Введение

Structured Query Language представляет собой непроцедурный язык, используемый для управления данными реляционных СУБД. Термин «непроцедурный» означает, что на данном языке можно сформулировать, что нужно сделать с данными, но нельзя проинструктировать, как именно это следует сделать. Иными словами, в этом языке отсутствуют алгоритмические конструкции, такие как метки, операторы цикла, условные переходы и др.

Язык SQL был создан в начале 70-х годов в результате исследовательского проекта IBM, целью которого было создание языка манипуляции реляционными данными. Первоначально он назывался SEQUEL (Structured English Query Language), затем - SEQUEL/2, а затем - просто SQL. Официальный стандарт SQL был опубликован ANSI (American National Standards Institute - Национальный институт стандартизации, США) в 1986 году (это наиболее часто используемая ныне реализация SQL). Данный стандарт был расширен в 1989 и 1992 годах, поэтому последний стандарт SQL носит название SQL92. В настоящее время ведется работа над стандартом SQL3, содержащим некоторые объектно-ориентированные расширения.

Существует три уровня соответствия стандарту ANSI - начальный, промежуточный и полный. Многие производители серверных СУБД, такие как IBM, Informix, Microsoft, Oracle и Sybase, применяют собственные реализации SQL, основанные на стандарте ANSI (отвечающие как минимум начальному уровню соответствия стандарту) и содержащие некоторые расширения, специфические для данной СУБД.

Более подробную информацию о соответствии стандарту версии SQL, используемой в конкретной СУБД, можно найти в документации, поставляемой с этой СУБД.

Как работает SQL

Давайте рассмотрим, как работает SQL. Предположим, что имеется база данных, управляемая с помощью какой-либо СУБД. Для извлечения из нее данных используется запрос, сформулированный на языке SQL. СУБД обрабатывает этот запрос, извлекает запрашиваемые данные и возвращает их. Этот процесс схематически изображен на рис. 1 .

Как мы увидим позже, SQL позволяет не только извлекать данные, но и определять структуру данных, добавлять и удалять данные, ограничивать или предоставлять доступ к данным, поддерживать ссылочную целостность.

Обратите внимание на то, что SQL сам по себе не является ни СУБД, ни отдельным продуктом. Это язык, применяемый для взаимодействия с СУБД и являющийся в определенном смысле ее неотъемлемой частью.

Data Definition Language (DDL)

Data Definition Language содержит операторы, позволяющие создавать, изменять и уничтожать базы данных и объекты внутри них (таблицы, представления и др.). Эти операторы перечислены в табл. 1.

Таблица 1

Оператор

Описание

Применяется для добавления новой таблицы к базе данных

Применяется для удаления таблицы из базы данных

Применяется для изменения структуры имеющейся таблицы

Применяется для добавления нового представления к базе данных

Применяется для удаления представления из базы данных

Применяется для создания индекса для данного поля

Применяется для удаления существующего индекса

Применяется для создания новой схемы в базе данных

Применяется для удаления схемы из базы данных

Применяется для создания нового домена

Применяется для переопределения домена

Применяется для удаления домена из базы данных

Data Manipulation Language (DML)

Data Manipulation Language содержит операторы, позволяющие выбирать, добавлять, удалять и модифицировать данные. Обратите внимание на то, что эти операторы не обязаны завершать транзакцию, внутри которой они вызваны. Операторы DML представлены в табл. 2.

Таблица 2

Иногда оператор SELECT относят к отдельной категории, называемой Data Query Language (DQL).

Cursor Control Language (CCL)

Операторы Cursor Control Language используются для определения курсора, подготовки SQL-предложений для выполнения, а также для некоторых других операторов. Операторы CCL представлены в табл. 5.

Таблица 5

Оператор

Описание

Применяется для определения курсора для запроса

Применяется для описания плана запроса. Этот оператор представляет собой расширение SQL для Microsoft SQL Server 7.0. Он не обязан выполняться в других СУБД. Например, в случае Oracle следует использовать оператор EXPLAIN PLAN

Применяется для открытия курсора при получении результатов запроса

Применяется для получения строки из результатов запроса

Применяется для закрытия курсора

Применяется для подготовки оператора SQL для выполнения

Применяется для выполнения оператора SQL

Применяется для описания подготовленного запроса

Все операторы SQL имеют вид, показанный на рис. 2 .

Каждый оператор SQL начинается с глагола, представляющего собой ключевое слово, определяющее, что именно делает этот оператор (SELECT, INSERT, DELETE...). В операторе содержатся также предложения, содержащие сведения о том, над какими данными производятся операции. Каждое предложение начинается с ключевого слова, такого как FROM, WHERE и др. Структура предложения зависит от его типа - ряд предложений содержит имена таблиц или полей, некоторые могут содержать дополнительные ключевые слова, константы или выражения.

С помощью чего можно выполнить SQL-операторы

Все современные серверные СУБД (а также многие популярные настольные СУБД) содержат в своем составе утилиты, позволяющие выполнить SQL-предложение и ознакомиться с его результатом. В частности, клиентская часть Oracle содержит в своем составе утилиту SQL Plus, а Microsoft SQL Server - утилиту SQL Query Analyzer. Именно этой утилитой мы воспользуемся для демонстрации возможностей SQL, а в качестве базы данных, над которой мы будем «экспериментировать», возьмем базу данных NorthWind, входящую в комплект поставки Microsoft SQL Server 7.0. В принципе, можно использовать другую базу данных и любую другую утилиту, способную выполнять в этой базе данных SQL-предложения и отображать результаты (или даже написать свою, используя какое-либо средство разработки - Visual Basic, Delphi, C++Builder и др.). Однако на всякий случай рекомендуется сделать резервную копию этой базы данных.

Всем привет! Сегодня я максимально просто, специально для начинающих, попытаюсь рассказать Вам о том, что такое SQL , и для чего он нужен. Из данного материала Вы также узнаете, что такое база данных и система управления базами данных, а также что такое диалект языка SQL, ведь вся статья будет построена на том, чтобы плавно подвести Вас к пониманию того, что же такое SQL.

Я думаю, Вы уже представляете себе, что SQL — это некий язык, связанный с какими-то там базами данных, однако для того, чтобы лучше понимать, что же такое SQL, необходимо понять, для чего нужен SQL, для чего нужен этот язык, т.е. его назначение.

Поэтому сначала я дам Вам немного вводной информации, из которой будет ясно назначение языка SQL, и для чего он вообще нужен.

Что такое база данных

И начну я с того, что под базой данных обычно принято понимать любой набор информации, которая хранится определенным образом, и ей можно воспользоваться. Но если говорить о каких-то автоматизированных базах данных, то здесь, конечно же, речь идет о так называемых реляционных базах данных.

Реляционная база данных – это упорядоченная информация, связанная между собой определёнными отношениями. Представлена она в виде таблиц, в которых и лежит вся эта информация. И это очень важно, так как теперь Вы должны представлять себе современную базу данных просто в виде таблиц (если говорить в контексте SQL ), т.е. в общем смысле база данных – это набор таблиц. Безусловно, это сильно упрощенное определение, но оно дает некое практическое понимание базы данных.

Что такое SQL

За счет того, что информация в базе данных упорядочена, разделена на определённые сущности и представлена в виде таблиц, к ней легко обратиться и найти нужную нам информацию.

И тут возникает главный вопрос: а как к ней обратиться и получить необходимую нам информацию?

Для этого должен быть специальный инструмент, и здесь к нам на помощь как раз и приходит SQL, который является тем инструментом, с помощью которого происходит манипулирование данными (создание, извлечение, удаление и т.д. ) в базе данных.

SQL (Structured Query Language ) — язык структурированных запросов, с помощью него пишутся специальные запросы (так называемые SQL инструкции ) к базе данных с целью получения данных из базы данных или для манипулирования этими данными.

Также обязательно стоит отметить и то, что база данных, и в частности реляционная модель, основана на теории множеств, которая подразумевает объединение разных объектов в одно целое, под одним целым в базе данных как раз и имеется в виду таблица. Это важно, так как язык SQL работает именно со множеством, с набором данных, т.е. с таблицами.

Полезные материалы по теме:

  • Создание базы данных в Microsoft SQL Server – инструкция для новичков ;
  • Добавление данных в таблицы в Microsoft SQL Server – инструкция INSERT INTO .

Что такое СУБД

У Вас может возникнуть вопрос, если база данных это некая информация, которая хранится в таблицах, то как она выглядит физически? Как на нее посмотреть в целом?

Если очень коротко, то это просто файл, созданный в специальном формате, именно так и выглядит база данных (в большинстве случаев БД включает несколько файлов, но сейчас на этом уровне это не так важно ).

Идем дальше, если база данных это файл в специальном формате, то как его создать или открыть? И тут возникает сложность, ведь просто так, без каких-либо инструментов создать такой файл, т.е. реляционную базу данных, нельзя, для этого нужен специальный инструмент, который мог бы создавать и управлять базой данных, иными словами, работать с этими файлами.

Таким инструментом как раз и выступает СУБД – это система управления базами данных , сокращенно СУБД.

Какие СУБД бывают

На самом деле, существует достаточно много различных СУБД, некоторые из них платные и стоят немалых денег, если говорить о полнофункциональных версиях, но даже у самых, так скажем, «крутых» есть бесплатные редакции, которые, кстати, отлично подходят для обучения.

Среди всех по своим возможностям и популярности можно выделить следующие системы:

  • Microsoft SQL Server – это система управления базами данных от компании Microsoft. Она очень популярна в корпоративном секторе, особенно в крупных компаниях. И это не просто СУБД – это целый комплекс приложений, позволяющий хранить и модифицировать данные, анализировать их, осуществлять безопасность этих данных и многое другое;
  • Oracle Database – это система управления базами данных от компании Oracle. Это также очень популярная СУБД, и также среди крупных компаний. По своим возможностям и функциональности Oracle Database и Microsoft SQL Server сопоставимы, поэтому являются серьезными конкурентами друг другу, и стоимость их полнофункциональных версий очень высока;
  • MySQL – это система управления базами данных также от компании Oracle, но только она распространяется бесплатно. MySQL получила очень широкую популярность в интернет сегменте, т.е. именно на MySQL работают чуть ли не все сайты в интернете, иными словами, большинство сайтов в интернете используют эту СУБД как средство хранения данных;
  • PostgreSQL – эта система управления базами данных также является бесплатной, и она очень популярна и функциональна.

Полезные материалы по теме:

  • Установка Microsoft SQL Server 2016 Express – пример установки бесплатной редакции Microsoft SQL Server на Windows;
  • Установка Microsoft SQL Server 2017 Express на Ubuntu Server – пример установки бесплатной редакции Microsoft SQL Server на Linux;
  • Установка PostgreSQL 11 на Windows – пример установки PostgreSQL на Windows;
  • Установка MySQL на Windows – пример установки MySQL на Windows;
  • Установка и настройка MySQL на Linux Mint – пример установки MySQL на Linux;
  • Установка Oracle Database Express Edition 11g – пример установки бесплатной редакции Oracle на Windows (статья писалась давно, но все равно будет полезной ).

Диалекты языка SQL (расширения SQL)

Язык SQL – это стандарт, он реализован во всех реляционных базах данных, но у каждой СУБД есть расширение этого стандарта, есть собственный язык работы с данными, его обычно называют диалектом SQL, который, конечно же, основан на SQL, но предоставляет больше возможностей для полноценного программирования, кроме того, такой внутренний язык дает возможность получать системную информацию и упрощать SQL запросы.

Вот некоторые диалекты языка SQL:

  • Transact-SQL (сокращенно T-SQL) – используется в Microsoft SQL Server;
  • PL/SQL (Procedural Language / Structured Query Language) – используется в Oracle Database;
  • PL/pgSQL (Procedural Language/PostGres Structured Query Language) – используется в PostgreSQL.

Таким образом, от СУБД зависит, на каком расширении Вы будете писать SQL инструкции. Если говорить о простых SQL запросах, например,

SELECT ProductId, ProductName FROM Goods

то, безусловно, во всех СУБД такие запросы работать будут, ведь SQL — это стандарт.

Примечание! Это простой SQL запрос на выборку данных из одной таблицы, выводятся два столбца.

Однако если Вы собираетесь программировать, использовать все внутренние возможности СУБД (разрабатывать процедуры, использовать встроенные функции, получать системную информацию и т.д. ), то Вам необходимо изучать конкретный диалект SQL и практиковаться соответственно в той СУБД, в которой используется этот диалект. Это важно, ведь синтаксис многих конструкций различается так же, как различаются возможности и многое другое. И если, допустим, Вы запустите SQL инструкцию, в которой использованы возможности определенного расширения SQL, на другой СУБД, то такая инструкция, конечно же, не выполнится.

Например, лично я специализируюсь на языке T-SQL, и соответственно, работаю с Microsoft SQL Server, вот уже более 8 лет!

Хотя, конечно же, с другими СУБД я также работал, одно время я сопровождал два приложения, одно из которых работало с PostgreSQL, ну а второе, наверное, уже понятно, с Microsoft SQL Server.

С MySQL я работал, как, наверное, и многие, в рамках сопровождения сайтов и сервисов. Ну а с Oracle Database мне приходилось работать в рамках других проектов.

Весь свой накопленный опыт в части языка T-SQL я сгруппировал в одном месте и оформил в виде книг, поэтому, если у Вас есть желание изучить язык Transact-SQL (T-SQL), рекомендую почитать мои книги:

  • Путь программиста T-SQL – самоучитель по языку Transact-SQL для начинающих. В ней я подробно рассказываю обо всех конструкциях языка и последовательно перехожу от простого к сложному. Подходит для комплексного изучения языка T-SQL;
  • Стиль программирования на T-SQL – основы правильного написания кода. Книга, направленная на повышение качества T-SQL кода (для тех, кто уже знаком с языком T-SQL, т.е. знает хотя бы основы ).

Надеюсь, теперь Вы понимаете, что такое SQL, и для чего он нужен, в следующих материалах я расскажу, как создавать SQL запросы, расскажу какие инструменты для этого необходимо использовать и для каких СУБД, так как у каждой СУБД есть свои инструменты, поэтому следите за выходом новых статей в моих группах в социальных сетях.

В этой главе вы узнаете как sql используется для расширения программ написанных на других языках. Хотя непроцедурность языка SQL делает его очень мощным, в то же время это накладывает на него большое число ограничений. Чтобы преодолеть эти ограничения, вы можете включать SQL в программы написанные на том или другом процедурном языке(имеющем определенный алгоритм). Для наших примеров, мы выбрали Паскаль, считая что этот язык наиболее прост в понимании для начинающих, и еще потому, что Паскаль - один из языков для которых ANSI имеет полуофициальный стандарт.

ЧТО ТАКОЕ - ВЛОЖЕНИЕ SQL

Чтобы вложить SQL в другой язык, вы должны использовать пакет программ который бы обеспечивал поддержку вложения SQL в этот язык и конечно же, поддержку самого языка. Естественно, вы должны быть знакомы с языком который вы используете. Главным образом, вы будете использовать команды SQL для работы в таблицах базы данных, передачи результатов вывода в программу и получение ввода из программы в которую они вкладываются, обобщенно ссылаясь к главной программе (которая может или не может принимать их из диалога или посылать обратно в диалог пользователя и программы).

ЗАЧЕМ ВКЛАДЫВАТЬ SQL?

Хотя и мы потратили некоторое врем на то чтобы показать что умеет делать SQL , но если вы - опытный программист, вы вероятно отметили, что сам по себе, он не очень полезен при написании программ. Самое очевидное ограничение - это то, что в то врем как SQL может сразу выполнить пакет команды, интерактивный SQL в основном выполняет по одной команде в каждый момент времени. Типы логических конструкций типа if ... then ("если... то"), for ... do ("для... выполнить") и while ... repeat("пока... повторять") - используемых для структур большинства компьютерных программ, здесь отсутствуют, так что вы не сможете принять решение - выполнять ли, как выполнять, или как долго выполнять одно действие в результате другого действия. Кроме того, интерактивный SQL не может делать многого со значениями, кроме ввода их в таблицу, размещения или распределения их с помощью запросов, и конечно вывода их на какое-то устройство.

Более традиционные языки, однако, сильны именно в этих областях. Они разработаны так чтобы программист мог начинать обработку данных, и основываясь на ее результатах, решать, делать ли это действие или другое, или же повторять действие до тех пока не встретится некоторое условие, создавая логические маршруты и циклы. Значения сохраняются в переменных, которые могут использоваться и изменяться с помощью любого числа команд. Это дает вам возможность указывать пользователям на ввод или вывод этих команд из файла, и возможность форматировать вывод сложными способами (например, преобразовывать числовых данных в диаграммы). Цель вложенного SQL состоит в том, чтобы объединить эти возможности, позволяющие вам создавать сложные процедурные программы которые адресуют базу данных посредством SQL - позволяя вам устранить сложные действия в таблицах на процедурном языке который не ориентирован на такую структуру данных, в тоже время поддерживая структурную строгость процедурного языка.

КАК ДЕЛАЮТСЯ ВЛОЖЕНИЯ SQL.

Команды SQL помещаются в исходный текст главной программы, которой предшествует фраза - EXEC SQL (EXECute SQL). Далее устанавливаются некоторые команды которые являются специальными для вложенной формы SQL, и которые будут представлены в этой главе. Строго говор, стандарт ANSI не поддерживает вложенный SQL как таковой. Он поддерживает понятие, называемое - модуль, который более точно, является вызываемым набором процедур SQL, а не вложением в другой язык. Официальное определение синтаксиса вложения SQL, будет включать расширение официального синтаксиса каждого языка в который может вкладываться SQL, что весьма долга и неблагодарна задача, которую ANSI избегает. Однако, ANSI обеспечивает четыре приложения (не являющиеся частью стандарта), которые определяют синтаксис вложения SQL для четырех языков: КОБОЛ, ПАСКАЛЬ, ФОРТРАН, и ПЛ/1. Язык C - также широко поддерживается как и другие языки. Когда вы вставляете команды SQL в текст программы написанной на друг- ом языке, вы должны выполнить предкомпиляцию прежде, чем вы окончательно ее скомпилируете. Программа называемая прекомпилятором (или препроцессором), будет просматривать текст вашей программы и преобразовывать команды SQL, в форму удобную для использования базовым языком.

Затем вы используете обычный транслятор чтобы преобразовывать программу из исходного текста в выполняемый код. Согласно подходу к модульному языку определенному ANSI, основная программа вызывает процедуры SQL. Процедуры выбирают параметры из глав- ной программы, и возвращают уже обработанные значения, обратно в основную программу. Модуль может содержать любое число процедур, каждая из которых состоит из одиночной команды SQL. Иде в том, чтобы процедуры могли работать тем же самым способом что и процедуры на языке в который они были вложены(хотя модуль еще должен идентифицировать базовый язык из-за различий в типах данных различных языков). Реализации могут удовлетворить стандарту, выполнив вложение SQL таким способом, как если бы модули уже были точно определены. Для этой цели прекомпилятор будет создавать модуль, называемый модулем доступа. Только один модуль, содержащий любое число процедур SQL, может существовать для данной программы. Размещение операторов SQL непосредственно в главном коде, происходит более просто и более практично чем непосредственно создание самих модулей. Каждая из программ использующих вложение SQL, связана с ID доступа, во время ее выполнения. ID доступа, связанный с программой, должен иметь все привилегии чтобы выполнять операции SQL, выполняемые в программе. Вообще то, вложенная программа SQL регистрируется в базе данных, также как и пользователь, выполняющий программу. Более подробно, это определяет проектировщик, но вероятно было бы неплохо для включить в вашу программу команду CONNECT или ей подобную.

ИСПОЛЬЗОВАНИЕ ПЕРЕМЕННЫХ ОСНОВНОГО ЯЗЫКА В SQL

Основной способ которым SQL и части базового языка ваших программ будут связываться друг с другом - это с помощью значений переменных. Естественно, что разные языки распознают различные типы данных для переменных. ANSI определяет эквиваленты SQL для четыре базовых языков - ПЛ/1, Паскаль, КОБОЛ, и ФОРТРАН; все это подробности описаны в Приложении B . Эквиваленты для других языков - определяет проектировщик. Имейте в виду, что типы, такие как DATE, не распознаются ANSI; и следовательно никаких эквивалентных типов данных для базовых языков, не существуют в стандарте ANSI. Более сложные типы данных базового языка, такие как матрицы, не имеют эквивалентов в SQL. Вы можете использовать переменные из главной программы во вложенных операторах SQL везде, где вы будете использовать выражения значений. (SQL, используемый в этой главе, будет пониматься как вложенный SQL, до тех пор пока это не будет оговорено особо.) Текущим значением переменной, может быть значение, используемое в команде. Главные переменные должны -

* быть объявлеными в SQL DECLARE SESSION (РАЗДЕЛ ОБЪЯВЛЕНИЙ) который будет описан далее.

* иметь совместимый тип данных с их функциями в команде SQL (например, числовой тип если он вставляется в числовое поле)

* быть назначенными значению во врем их использования в команде SQL, если команда SQL самостоятельно не может сделать назначение.

* предшествовать двоеточию (:) когда они упоминаются в команде SQL

Так как главные переменные отличаются от имен столбцов SQL наличием у них двоеточия, вы можете использовать переменные с теми же самыми именами что и ваши столбцы, если это конечно нужно. Предположим что вы имеете четыре переменных в вашей программе, с именами: id_num, salesperson, loc, и comm. Они содержат значения которые вы хотите вставить в таблицу Продавцов. Вы могли бы вложить следующую команду SQL в вашу программу: EXEC SQL INSERT INTO Salespeople VALUES (:id_num, :salesperson, :loc, :comm) Текущие значения этих переменных будут помещены в таблицу. Как вы можете видеть, переменна comm имеет то же самое им что и столбец в который это значение вкладывается. Обратите внимание, что точка с запятой в конце команды отсутствует. Это потому, что соответствующее завершение для вложенной команды SQL за- висит от языка для которого делается вложение.

Для Паскаля и PL/1, это будет точка с запятой; для КОБОЛА, слово END-EXEC ; и для ФОРТРАНА не будет никакого завершения. В других языках это зависит от реализации, и поэтому мы договоримся что будем использовать точку с запятой (в этой книге) всегда, чтобы не противоречить интерактивному SQL и Паскалю. Паскаль завершает вложенный SQL и собственные команды одинаково - точкой с запятой. Способ сделать команду полностью такой как описана выше, состоит в том, чтобы включать ее в цикл и повторять ее, с различными значения- ми переменных, как например показано в следующем примере: while not end-ot-file (input) do begin readln (id_num, salesperson, loc, comm); EXEC SOL INSERT INTO Salespeople VALUES (:id_num, :salesperson, :loc, :comm); end; Фрагмент программы на ПАСКАЛЕ, определяет цикл, который будет считывать значения из файла, сохранять их в четырех проименованных переменных, сохранять значения этих переменных в таблице Продавцов, и затем считывать следующие четыре значения, повтор этот процесс до тех пор пока весь входной файл не прочитается. Считается, что каждый набор значений завершается возвратом каретки (для незнакомых с Паскалем, функция readln считывает вводимую информацию и пере- ходит на следующую строку источника этой информации). Это дает вам простой способ передать данные из текстового файла в реляционную структуру. Конечно, вы можете сначала обработать данные любыми возможными способами на вашем главном языке, например для исключения всех комиссионных ниже значения.12 while not end-ot-file (input) do begin readln (id_num, salesperson, loc, comm); if comm > = .12 then EXEC SQL INSERT INTO Salespeople VALUES (:id_num, :salesperson, :loc, :comm); end; Только строки которые встретят условие comm >= .12 будут вставлены в вывод. Это показывает что можно использовать и циклы и условия как нормальные для главного языка.

ОБЪЯВЛЕНИЕ ПЕРЕМЕННЫХ

Все переменные на которые имеется ссылка в предложениях SQL, должны сначала быть объявлены в SQL DECLARE SECTION (РАЗДЕЛе ОБЪЯВЛЕНИЙ), использующем обычный синтаксис главного языка. Вы можете иметь любое число таких разделов в программе, и они могут размещаться где-нибудь в коде перед используемой переменной, подчиненной ограничениям определенным в соответствии с главным языком. Раздел объявлений должен начинать и кончаться вложенными командами SQL - BEGIN DECLARE SECTION (Начало Раздела Объявлений) и END DECLARE SECTION (Конец Раздела Объявлений), которым предшествует, как обычно EXEC SQL (Выполнить). Чтобы объявить переменные используемые в предыдущем примере, вы можете ввести следующее: EXEC SQL BEGIN DECLARE SECTION; Var id-num: integer; Salesperson: packed array (1 . .10) ot char; loc: packed array (1. .10) ot char; comm: real; EXEC SQL END DECLARE SECTION; Для незнакомых с ПАСКАЛем, Var - это заголовок который предшествует ряду объявляемых переменных, и упакованным (или распакованным) массивам являющимися серией фиксированных переменных значений различаемых с помощью номеров(например, третий символ loc будет loc (3)). Использование точки с запятой после каждой переменной указывает на то что это - Паскаль, а не SQL.

ИЗВЛЕЧЕНИЕ ЗНАЧЕНИЙ ПЕРЕМЕННЫХ

Кроме помещения значений переменных в таблицы используя команды SQL, вы можете использовать SQL чтобы получать значения для этих переменных. Один из способов делать это - с помощью разновидности команды SELECT которая содержит предложение INTO. Давайте вернемся к нашему предыдущему примеру и переместим строку Peel из таблицы Продавцов в наши переменные главного языка. EXEC SQL SELECT snum, sname, city, comm INTO:id_num, :salesperson, :loc, :comm FROM Salespeople WHERE snum = 1001; Выбранные значения помещаются в переменные с упорядоченными именами указанными в предложении INTO. Разумеется, переменные с именами указанными в предложении INTO должны иметь соответствующий тип чтобы принять эти значения, и должна быть своя переменная для ка- ждого выбранного столбца. Если не учитывать присутствие предложения INTO, то этот запрос - похож на любой другой. Однако, предложение INTO добавляет значительное ограничение к запросу. Запрос должен извлекать не более одной строки. Если он извлекает много строк, все они не могут быть вставлены одновременно в одну и ту же переменную. Команда естественно потер- пит неудачу. По этой причине, SELECT INTO должно использоваться только при следующих условиях:

* когда вы используете предикат проверяющий значения, которое как вы знаете, могут быть уникальным, как в этом примере. Значения которые, как вы знаете, могут быть уникальными - это те значения которые имеют принудительное ограничение уникальности или уникальный индекс, как это говорилось в Главах 17 и .

* когда вы используете одну или более агрегатных функций и не используете GROUP BY.

* когда вы используете SELECT DISTINCT во внешнем ключе с предикатом ссылающимся на единственное значение родительского ключа (обеспечивая вашей системе предписание справочной целостность), как в следующем примере: EXEC SQL SELECT DISTINCT snum INTO:salesnum FROM Customers WHERE snum = (SELECT snum FROM Salespeople WHERE sname = "Motika"); Предполагалось что Salespeople.sname и Salespeople.snum - это соответственно, уникальный и первичный ключи этой таблицы, а Customers.snum - это внешний ключ ссылающийся на Salespeople.snum, и вы предполагали что этот запрос произведет единственную строку. Имеются другие случаи, когда вы можете знаете, что запрос должен про- извести единственную строку вывода, но они мало известны и, в большинстве случаев, вы основываетесь на том что ваши данные имеют целостность, которая не может быть предписана с помощью ограничений. Не полагайтесь на это! Вы создаете программу которая, вероятно, будет использоваться в течение некоторого времени, и лучше всего проиграть ее чтобы быть гарантированным в будущем от возможных отказов. Во всяком случае, нет необходимости группировать запросы которые производят одиночные строки, поскольку SELECT INTO - используется только для удобства. Как вы увидите, вы можете использовать запросы выводящие многочисленные строки, используя курсор.

КУРСОР

Одна из сильных качеств SQL - это способность функционировать на всех строках таблицы, чтобы встретить определенное условие как блок запись, не зная сколько таких строк там может быть. Если десять строк удовлетворяют предикату, то запрос может вывести все десять строк. Если десять миллионов строк определены, все десять миллионов строк будут выведены. Это несколько затруднительно, когда вы попробуете связать это с другими языками. Как вы сможете назначать вывод запроса для переменных когда вы не знаете как велик будет вывод? Решение состоит в том, чтобы использовать то, что называется - курсором. Вы вероятно знакомы с курсором, как с мигающей черточкой, которая отмечает вашу позицию на экране компьютера. Вы можете рассматривать SQL курсор как устройство, которое аналогично этому, отмечает ваше место в выводе запроса, хотя аналоги не полна. Курсор - это вид переменной, которая связана с запросом. Значением этой переменной может быть каждая строка, которая выводится при запросе. Подобно главным переменным, курсоры должны быть объявлены прежде, чем они будут использованы. Это делается командой DECLARE CURSOR, следующим образом: EXEC SQL DECLARE CURSOR Londonsales FOR SELECT * FROM Salespeople WHERE city = "London"; Запрос не выполнится немедленно; он - только определяется. Курсор не- много напоминает представление, в котором курсор содержит запрос, а содержание курсора - напоминает любой вывод запроса, каждый раз когда курсор становится открытым. Однако, в отличие от базовых таблиц или представлений, строки курсора упорядочены: имеются первая, вторая... ... и последняя строка курсора. Этот порядок может быть произвольным с явным управлением с помощью предложения ORDER BY в запросе, или же по умолчанию следовать какому-то упорядочению определяемому инструментально-определяемой схемой. Когда вы находите точку в вашей программе в которой вы хотите выполнить запрос, вы открываете курсор с помощью следующей команды: EXEC SQL OPEN CURSOR Londonsales; Значения в курсоре могут быть получены, когда вы выполняете именно эту команду, но не предыдущую команду DECLARE и не последующую команду FETСH. Затем, вы используете команду FETCH чтобы извлечь вывод из этого запроса, по одной строке в каждый момент времени. EXEC SQL FETCH Londonsales INTO:id_num, :salesperson, :loc, :comm; Это выражение переместит значения из первой выбранной строки, в переменные. Друга команда FETCH выводит следующий набор значений. Идея состоит в том, чтобы поместить команду FETCH внутрь цикла, так чтобы выбрав строку, вы могли переместив набор значений из этой строки в переменные, возвращались обратно в цикл чтобы переместить следующий набор значений в те же самые переменные. Например, возможно вам нужно чтобы вывод выдавался по одной строке, спрашивая каждый раз у пользователя, хочет ли он продолжить чтобы увидеть следующую строку Look_at_more:= True; EXEC SQL OPEN CURSOR Londonsales; while Look_at_more do begin EXEC SQL FETCH Londonsales INTO:id_num, :Salesperson, :loc, :comm; writeln (id_num, Salesperson, loc, comm); writeln ("Do you want to see more data? (Y/N)"); readln (response); it response = "N" then Look_at_more: = False end; EXEC SQL CLOSE CURSOR Londonsales; В Паскале, знак: = означает - " является назначенным значением из ", в то врем как = еще имеет обычное значение " равно ". Функция writeln записывает ее вывод, и затем переходит к новой строке. Одиночные кавычки вокруг символьных значений во втором writeln и в предложении if ... then - обычны для Паскаля, что случается при дубликатах в SQL. В результате этого фрагмента, Булевая переменна с именем Look_at _more должна быть установлена в состояние верно, открыт курсор, и введен цикл. Внутри цикла, строка выбирается из курсора и выводится на экран. У пользователя спрашивают, хочет ли он видеть следующую строку. Пока он не ответил N (Нет), цикл повторяется, и следующая строка значений будет выбрана. Хотя переменные Look_at_more и ответ должны быть объявлены как Булевая переменна и символьная(char) переменна, соответственно, в разделе объявлений переменных в Паскаля, они не должны быть включены в раздел объявлений SQL, потому что они не используются в командах SQL. Как вы можете видеть, двоеточия перед именами переменных не используются для не-SQL операторов. Далее обратите внимание, что имеется оператор CLOSE CURSOR соответствующий оператору OPEN CURSOR. Он, как вы поняли, освобождает курсор значений, поэтому запрос будет нужно выполнить повторно с оператором OPEN CURSOR, прежде чем перейти в выбору следующих значений. Это необязательно для тех строк которые были выбраны запросом после закрытия курсора, хотя это и обычна процедура. Пока курсор закрыт, SQL не следит за тем, какие строки были выбраны. Если вы открываете курсор снова, запрос повторно выполняется с этой точки, и вы начинаете все сначала. Этот пример не обеспечивает автоматический выхода из цикла, когда все строки уже будут выбраны. Когда у FETCH нет больше строк которые надо извлекать, он просто не меняет значений в переменных предложения INTO. Следовательно, если данные исчерпались, эти переменные будут неоднократно выводиться с идентичными значениями, до тех пор пока пользователь не завершит цикл, введя ответ - N.

SQL КОДЫ

Хорошо было бы знать, когда данные будут исчерпаны, так чтобы можно было сообщить об этом пользователю и цикл завершился бы автоматически. Это - даже более важно чем например знать что команда SQL выполнена с ошибкой. Переменна SQLCODE (называемая еще SQLCOD в ФОРТРАНе) предназначена чтобы обеспечить эту функцию. Она должна быть определена как переменна главного языка и должна иметь тип данных который в главном языке соответствует одному из точных числовых типов SQL, как это показано в Приложении B . Значение SQLCODE устанавливается каждый раз, когда выполняется команда SQL. В основном существуют три возможности: 1. Команда выполнилась без ошибки, но не произвела никакого действия. Для различных команд это выглядит по разному:

А) Для SELECT, ни одна строка не выбрана запросом.

Б) Для FETCH, последняя строка уже была выбрана, или ни одной строки не выбрано запросом в курсоре.

В) Для INSERT, ни одной строки не было вставлено (подразумевается что запрос использовался чтобы сгенерировать значения для вставки, и был отвергнут при попытке извлечения любой строки.

Г) Для UPDATE и DELETE, ни одна строка не ответила условию предиката, и следовательно никаких изменений сделано в таблице не будет.

В любом случае, будет установлен код SQLCODE = 100.

2. Команда выполнилась нормально, не удовлетворив ни одному из выше указанных условий. В этом случае, будет установлен код SQLCOD = 0.

3. Команда сгенерировала ошибку. Если это случилось, изменения сделанные к базе данных текущей транзакцией, будут восстановлены(см. Главу 23). В этом случае будет установлен код SQLCODE = некоторому отрицательному числу, определяемому проектировщиком. Задача этого числа, идентифицировать проблему, так точно насколько это возможно. В принципе, ваша система должна быть снабжена подпрограммой, которая в этом случае, должна выполниться чтобы вы- дать для вас информацию расшифровывающее значение негатив- ного числа определенного вашим проектировщиком. В этом случае некоторое сообщение об ошибке будет выведено на экран или за- писано в файл протокола, а программа в это врем выполнит восстановление изменений для текущей транзакции, отключится от базы данных и выйдет из нее. Теперь мы можем усовершенствовать

ИСПОЛЬЗОВАНИЕ SQLCODE ДЛЯ УПРАВЛЕНИЯ ЦИКЛАМИ

наш предыдущий пример для выхода из цикла автоматически, при условии что курсор пуст, все строки выбраны, или произошла ошибка: Look_at_more: = lhe; EXEC SQL OPEN CURSOR Londonsales; while Look_at_more and SQLCODE = O do begin EXEC SQL FETCH London$ales INTO:id_num, :Salesperson, :loc, :comm; writeln (id_num, Salesperson, loc, comm); writeln ("Do you want to see more data? (Y/N)"); readln (response); If response = "N" then Look_at_more: = Fabe; end; EXEC SQL CLOSE CURSOR Londonsales;

ПРЕДЛОЖЕНИЕ WHENEVER

Это удобно для выхода при выполненном условии - все строки выбраны. Но если вы получили ошибку, вы должны предпринять нечто такое, что описано для третьего случая, выше. Для этой цели, SQL предоставляет предложение GOTO. Фактически, SQL позволяет вам применять его до- статочно широко, так что программа может выполнить команду GOTO автоматически, если будет произведено определенное значение SQLCODE. Вы можете сделать это совместно с предложением WHENEVER. Имеется кусок из примера для этого случая: EXEC SQL WHENEVER SQLERROR GOTO Error_handler; EXEC SQL WHENEVER NOT FOUND CONTINUE; SQLERROR- это другой способ сообщить что SQLCODE < 0; а NOT FOUND - это другой способ сообщить что SQLCODE = 100. (Некоторые реализации называют последний случай еще как - SQLWARNING.) Error_handler - это им того места в программе в которое будет пере- несено выполнение программы если произошла ошибка (GOTO может состоять из одного или двух слов). Такое место определяется любым способом соответствующим для главного языка, например, с помощью метки в Паскале, или имени раздела или имени параграфа в КОБОЛЕ (в дальнейшем мы будем использовать термин - метка). Метка более удач- но идентифицирует стандартную процедуру распространяемую проектировщиком для включения во все программы.

CONTINUE не делает чего-то специального для значения SQLCODE. Оно также является значением по умолчанию. если вы не используете команду WHENEVER, определяющую значение SQLCODE. Однако, эти неактивные определения дают вам возможность переключаться вперед и назад, выполняя и не выполняя действия, в различных точках(метках) вашей программы. Например, если ваша программа включает в себя несколько команд INSERT, использующих запросы, которые реально должны производить значения, вы могли бы напечатать специальное сообщение или сделать что-то такое, что поясняло бы, что запросы возвращаются пустыми и никакие значения не бы- ли вставлены. В этом случае, вы можете ввести следующее: EXEC SQL WHENEVER NOT FOUND GOTO No_rows; No_rows - это метка в некотором коде, содержащем определенное действие. С другой стороны, если вам нужно сделать выборку в программе поз- же, вы можете ввести следующее в этой точке, EXEC SQL WHENEVER NOT FOUND CONTINUE; что бы выполнение выборки повторялось до тех пор пока все строки не будут извлечены, что является нормальной процедурой не требующей специальной обработки.

МОДИФИЦИРОВАНИЕ КУРСОРОВ

Курсоры могут также быть использованы, чтобы выбирать группу строк из таблицы, которые могут быть затем модифицированы или удалены од- на за другой. Это дает вам возможность, обходить некоторые ограничения предикатов используемых в командах UPDATE и DELETE. Вы можете ссылаться на таблицу задействованную в предикате запроса курсора или любом из его подзапросов, которые вы не можете выполнить в предикатах самих этих команд. Как подчеркнуто в Главе 16 , стандарт SQL отклоняет попытку удалить всех пользователей с рейтингом ниже среднего, в следующей форме: EXEC SQL DELETE FROM Customers WHERE rating < (SELECT AVG (rating) FROM Customers); Однако, вы можете получить тот же эффект, используя запрос для выбора соответствующих строк, запомнив их в курсоре, и выполнив DELETE с использованием курсора. Сначала вы должны объявить курсор: EXEC SQL DECLARE Belowavg CURSOR FOR SELECT * FROM Customers WHERE rating < (SELECT AVG (rating) FROM Customers); Затем вы должны создать цикл, чтобы удалить всех заказчиков выбранных курсором: EXEC SQL WHENEVER SQLERROR GOTO Error_handler; EXEC SQL OPEN CURSOR Belowavg; while not SOLCODE = 100 do begin EXEC SOL FETCH Belowavg INTO:a, :b, :c, :d, :e; EXEC SOL DELETE FROM Customers WHERE CURRENT OF Belowavg; end; EXEC SOL CLOSE CURSOR Belowavg; Предложение WHERE CURRENT OF означает что DELETE применяется к строке которая в настоящее время выбрана курсором. Здесь подразумевается, что и курсор и команда DELETE, ссылаются на одну и ту же таблицу, и следовательно, что запрос в курсоре - это не объединение. Курсор должен также быть модифицируемым. Являясь модифицируемым, курсор должен удовлетворять тем же условиям что и представления (см. Главу 21). Кроме того, ORDER BY и UNION, которые не разрешены в представлениях, в курсорах - разрешаются, но предохраняют курсор от модифицируемости. Обратите внимание в вышеупомянутом примере, что мы должны выбирать строки из курсора в набор переменных, даже если мы не собирались использовать эти переменные. Этого требует синтаксис команды FETCH. UPDATE работает так же. Вы можете увеличить значение комиссионных всем продавцам, которые имеют заказчиков с оценкой=300, следующим способом. Сначала вы объявляете курсор: EXEC SOL DECLARE CURSOR High_Cust AS SELECT * FROM Salespeople WHERE snum IN (SELECT snum FROM Customers WHERE rating = 300); Затем вы выполняете модификации в цикле: EXEC SQL OPEN CURSOR High_cust; while SQLCODE = 0 do begin EXEC SOL FETCH High_cust INTO:id_num, :salesperson, :loc, :comm; EXEC SQL UPDATE Salespeople SET comm = comm + .01 WHERE CURRENT OF High_cust; end; EXEC SQL CLOSE CURSOR High_cust; Обратите внимание: что некоторые реализации требуют, чтобы вы указы- вали в определении курсора, что курсор будет использоваться для выполнения команды UPDATE на определенных столбцах. Это делается с помощью заключительной фразы определения курсора - FOR UPDATE . Чтобы объявить курсор High_cust таким способом, так чтобы вы мог- ли модифицировать командой UPDATE столбец comm, вы должны ввести следующее предложение: EXEC SQL DECLARE CURSOR High_Cust AS SELECT * FROM Salespeople WHERE snum IN (SELECT snum FROM Customers WHERE rating = 300) FOR UPDATE OF comm; Это обеспечит вас определенной защитой от случайных модификаций, которые могут разрушить весь порядок в базе данных.

ПЕРЕМЕННАЯ INDICATOR

Пустые (NULLS) значения - это специальные маркеры определяемые сам- ой SQL. Они не могут помещаться в главные переменные. Попытка вставить NULL значения в главную переменную будет некорректна, так как главные языки не поддерживают NULL значений в SQL, по определению. Хо- т результат при попытке вставить NULL значение в главную переменную определяет проектировщик, этот результат не должен противоречить теории базы данных, и поэтому обязан произвести ошибку: код SQLCODE в виде отрицательного числа, и вызвать подпрограмму управления ошибкой. Естественно вам нужно этого избежать. Поэтому, вы можете выбрать NULL значения с допустимыми значениями, не приводящими к разрушению вашей программы. Даже если программа и не разрушится, значения в главных переменных станут неправильными, потому что они не могут иметь NULL значений. Альтернативным методом предоставляемым для этой ситуацией является - функция переменной indicator(указатель). Переменна indicator - объявлена в разделе объявлений SQL напоминает другие переменные. Она может иметь тип главного языка который соответствует числовому типу в SQL. Всякий раз, когда вы выполняете операцию, которая должна поместить NULL значение в переменную главного языка, вы должны использовать переменную indicator, для надежности. Вы помещаете переменную indicator в команду SQL непосредственно после переменной главного языка которую вы хотите защитить, без каких-либо пробелов или запятых, хотя вы и можете, при желании, вставить слово - INDICATOR. Переменной indicator в команде, изначально присваивается значение 0. Однако, если производитс значение NULL , переменна indicator станов- итс равной отрицательному числу. Вы можете проверить значение перем- енной indicator, чтобы узнать, было ли найдено значение NULL. Давайте предположим, что пол city и comm, таблицы Продавцов, не имеют ограни- чени NOT NULL, и что мы объвили вразделе обьвлений SQL, две ПАСКАЛЬевские переменные целого типа, i_a и i_b. (Нет ничего такого в разделеобьвлений, что могло бы представить их как переменные indicator. Они станут переменными indicator, когда бу- дут использоваться как переменные indicator.) Имеется одна возможность: EXEC SQL OPEN CURSOR High_cust; while SQLCODE = O do begin EXEC SQL FETCH High_cust INTO:id_num, :salesperson, :loc:i_a, :commINDlCATOR:i_b; If i_a > = O and i_b > = O then {no NULLs produced} EXEC SQL UPDATE Salespeople SET comm = comm + .01 WHERE CURRENT OF Hlgh_cust; else {one or both NULL} begin If i_a < O then writeln ("salesperson ", id_num, " has no city"); If i_b < O then writeln ("salesperson ", id_num, " has no commission"); end; {else} end; {while} EXEC SQL CLOSE CURSOR High_cust; Как вы видите, мы включили, ключевое слово INDICATOR в одном случае, и исключили его в другом случае, чтобы показать, что эффект будет одинаковым в любом случае. Каждая строка будет выбрана, но команда UPDATE выполнится только если NULL значения не будут обнаружены. Если будут обнаружены NULL значения, выполнится еще одна часть программы, которая распечатает предупреждающее сообщение, где было найдено каждое NULL значение. Обратите внимание: переменные indicator должны проверяться в главном языке, как указывалось выше, а не в предложении WHERE команды SQL. Последнее в принципе не запрещено, но результат часто бывает непредвиденным.

ИСПОЛЬЗОВАНИЕ ПЕРЕМЕННОЙ INDICATOR ДЛЯ ЭМУЛЯЦИИ NULL ЗНАЧЕНИЙ SQL

Друга возможность состоит в том, чтобы обрабатывать переменную indicator, связывая ее с каждой переменной главного языка, специальным способом, эмулирующим поведение NULL значений SQL. Всякий раз, когда вы используете одно из этих значений в вашей программе, например в предложении if ... then, вы можете сначала проверить связанную переменную indicator, является ли ее значение=NULL. Если это так, то вы обрабатываете переменную по-другому. Например, если NULL значение было извлечено из пол city для главной перемен- ной city, которая связана с переменной indicator - i_city, вы должны установить значение city равное последовательности пробелов. Это будет необходимо, только если вы будете распечатывать его на принтере; его значение не должно отличаться от логики вашей программы. Естественно, i_city автоматически устанавливается в отрицательное значение. Предположим, что вы имели следующую конструкцию в вашей программе: If sity = "London" then comm: = comm + .01 else comm: = comm - .01 Любое значение, вводимое в переменную city, или будет равно "London" или не будет равно. Следовательно, в каждом случае значение комиссионных будет либо увеличено либо уменьшено. Однако, эквивалентные команды в SQL выполняются по разному: EXEC SQL UPDATE Salespeople SET comm = comm + .01 WHERE sity = "London"; и EXEC SQL UPDATE Salespeople SET comm = comm .01; WHERE sity < > "London"; (Вариант на ПАСКАЛе работает только с единственным значением, в то врем как вариант на SQL работает со всеми таблицами.) Если значение city в варианте на SQL будет равно значению NULL , оба предиката будут неизвестны, и значение comm, следовательно, не будет изменено в любом случае. Вы можете использовать переменную indicator чтобы сделать поведение вашего главного языка непротиворечащим этому, с помощью создания условия, которое исключает NULL значения: If i_city > = O then begin If city = "London" then comm: = comm + .01 else comm: = comm - .01; end; {begin and end нужны здесь только для понимания}
ПРИМЕЧАНИЕ: Последняя строка этого примера содержит ремарку - { begin и end необходимы только для понимания }
В более сложной программ, вы можете захотеть установить Булевую переменную в "верно" , чтобы указать что значение city =NULL. Затем вы можете просто проверять эту переменную всякий раз, когда вам это необходимо.

ДРУГОЕ ИСПОЛЬЗОВАНИЕ ПЕРЕМЕННОЙ INDICATOR

Переменна indicator также может использоваться для назначения значения NULL. Просто добавьте ее к имени главной переменной в команде UPDATE или INSERT тем же способом что и в команде SELECT. Если переменна indicator имеет отрицательное значение, значение NULL будет помещено в поле. Например, следующая команда помещает значения NULL в пол city и comm, таблицы Продавцов, всякий раз, когда переменные indicator - i_a или i_b будут отрицательными; в противном случае она помещает туда значения главных переменных: EXEC SQL INSERT INTO Salespeople VALUES (:Id_num, :salesperson, :loc:i_a, :comm:i_b); Переменна indicator используется также, чтобы показывать отбрасываемую строку. Это произойдет если вы вставляете значения символов SQL в главную переменную которая не достаточно длинна чтобы вместить все символы. Это особа проблема с нестандартным типами данных - VARCHAR и LONG (смотри Приложению C). В этом случае, переменна будет заполнена первыми символами строки, а последние символы будут потеряны. Если используется переменна indicator, она будет установлена в положительное значение, указывающее на длину отбрасываемой части строки, позволяя таким образом вам узнать, сколько символов было потеряно. В этом случае, Вы можете проверить с помощью просмотра -значение переменной indicator > 0, или < 0.

РЕЗЮМЕ

Команды SQL вкладываются в процедурные языках, чтобы объединить силы двух подходов. Некоторые дополнительные средства SQL необходимы, чтобы выполнить эту работу. Вложенные команды SQL транслируемые программой, называемой прекомпилятором, в форму пригодную для использования транслятором главного языка, и используемые в этом главном языке, как вызовы процедуры к подпрограммам которые создает прекомпилятор, называются - модулями доступа. ANSI поддерживает вложение SQL в языки: ПАСКАЛЬ, ФОРТРАН, КОБОЛ, и PL/I. Другие языки также используются, особенно Си. В попытке кратко описать вложенный SQL, имеются наиболее важные места в этой главе:

* Все вложенные команды SQL начинаются словами EXEC SQL и заканчиваются способом который зависит от используемого главного языка.

* Все главные переменные доступные в командах SQL, должны быть объявлены в разделе объявлений SQL прежде, чем они будут использованы.

* Всем главным переменным должно предшествовать двоеточие когда они используются в команде SQL.

* Запросы могут сохранять свой вывод непосредственно в главных переменных, используя предложение INTO, если и только если, они выбирают единственную строку.

* Курсоры могут использоваться для сохранения вывода запроса, и доступа к одной строке в каждый момент времени. Курсоры бывают объявлеными (если определяют запрос в котором будут содержаться), открытыми(если выполняют запрос), и закрытыми (если удаляют вывод запроса из курсора). Если курсор открыт, команда FETCH, используется чтобы перемещать его по очереди к каждой строке вывода запроса.

* Курсоры являются модифицируемыми или только-чтение. Чтобы стать модифицируемым, курсор должен удовлетворять всем критериям которым удовлетворяет просмотр; кроме того, он не должен использовать предложений ORDER BY или UNION, которые в любом случае не могут использоваться просмотрами. Не модифицируемый курсор является курсором только-чтение.

* Если курсор модифицируемый, он может использоваться для определения, какие строки задействованы вложенными командами UPDATE и DELETE через предложение WHERE CURRENT OF. DELETE или UPDATE должны быть вне той таблицы к которой кур- сор обращаетс в запросе.

* SQLCODE должен быть объявлен как переменна числового типа для каждой программы которая будет использовать вложенный SQL. Его значение устанавливается автоматически после выполнения каждой команды SQL.

* Если команда SQL выполнена как обычно, но не произвела вывода или ожидаемого изменения в базе данных, SQLCODE = 100. Если команда произвела ошибку, SQLCODE будет равняться некоторому аппаратно- определенному отрицательному числу которое описывает ошибку. В противном случае, SQLCODE = 0.

* Предложение WHENEVER может использоваться для определения действия которое нужно предпринять когда SQLCODE = 100 (не найдено) или когда SQLCODE равен отрицательному числу (SQLERROR). Действием может быть или переход к некоторой определенной метке в программе (GOTO

juristi-online.ru - Сервис юридической помощи